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Constant-Cutoff Approach to Soliton Polarizabilities 
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The static electromagnetic polarizabilities of nucleons and A-particles are calcu- 
lated in the simplified Skyrme model, where the quartic Skyrme stabilizing term 
is omitted and where the constant-cutoff stabilization method is used to stabilize 
the Skyrme soliton. The numerical results are Of the same accuracy as those 
obtained using the complete Skyrme model, but the simplified Skyrme model 
offers simpler mathematical structure and easier calculations. 

1. INTRODUCTION 

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of  a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) o.-model is 

= ~ T r  O , U # " U  + (1.1) 

where 

2 
U = ~- (o" + i t .  n) (1.2) 

is a unitary operator (UU + = 1) and F. is the pion-decay constant. In (1.2), 
o. = o.(r) is a scalar meson field and rt = n(r) is the pion isotriplet. 

The classical stability of  the soliton solution to the chiral o.-model 
Lagrangian requires the additional ad hoc term, proposed by Skyrme 
(1961, 1962) to be added to (1.1), 

1 
5r = 3-~SeZ Tr[U + c~ U, U + c~v U] 2 (1.3) 
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with a dimensionless parameter e and where [A, B] = A B -  BA. It was 
shown by several authors (Atkins et al., 1983; see also Holzwarth and 
Schwesinger, 1986, and Nyman and Riska, 1990, and references therein) 
that, after the collective quantization using the spherically symmetric 
ansatz 

Uo(r) = exp[iz �9 roF(r)], ro = r/r (1.4) 

the chiral model, with both (1.1) and (!.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should 
be possible to derive the effective chiral Lagrangian, obtained as a sum of 
(1.1) and (1.3), from a more fundamental theory like QCD. On the other 
hand, it is not easy to generate a term like (1.3) and give a clear physical 
meaning to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (MW) (1989) indicated therefore a possibility to 
build a stable single-baryon (n = 1) quantum state in the simple chiral 
theory, with the Skyrme stabilizing term (1.3) omitted. M W  showed that 
the chiral angle F(r) is in fact a function of  a dimensionless variable 

1 . s = 5X (0)r, where 7f(0) is an arbitrary dimensional parameter intimately 
connected to the usual stability argument against the soliton solution for 
the nonlinear a-model Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A +(t), where 
Uo(r) is given by (1.4), MW obtained the total energy of  the nonlinear 
a-model soliton in the form 

~ 1 1 [Z"(O)] ~ j ( j  + 1) (1.5) 
E = ~ I;~ ~ a 4 20r/4)FZb 

where 

a = \ ds // q- 8 sin 2 

fo ~ 64 ( ~ )  b= ds .~  s 2sin 2 Y (1.7) 

and ~ ( s )  is defined by 

1 
F(r) = F(s) = --n~ + ~ ~,~(s) (1.8) 

The stable minimum of the function (1.5) with respect to the arbitrary 
dimensional scale parameter Z"(0) is 

E 4 t-3 ( ~ 2  a 3 1)']1/4 ( 1.9) 
3 
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Despite the nonexistence of the stable classical soliton solution to the 
nonlinear a-model,  it is possible, after the collective coordinate quantiza- 
tion, to build a stable chiral soliton at the quantum level, provided that 
there is a solution F -- F(r) which satisfies the soliton boundary conditions, 
i.e., F(0) = - n n ,  F(oo) = 0 ,  such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by Mignaco and Wulck (1989) 
is not correct, since in the simple a-model  the conditions F(0) = - n n  and 
F(oo) = 0 cannot be satisfied simultaneously. In other words, if the condi- 
tion F ( 0 ) = - - n  is satisfied, Iwasaki and Ohyama obtained numerically 
F(oo) ~ - n / 2 ,  and the chiral phase F = F(r) with correct boundary condi- 
tions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary 
conditions F(0) = - n n  and F(oo) = 0 cannot be satisfied simultaneously. 
Introducing a new variable y = 1/r into the differential equation for the 
chiral angle F = F(r), we obtain 

d2F 1 
dy 2 72 sin 2F (1.10) 

There are two kinds of  asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~ 2F. These 
solutions are 

mTc 2 
F(y) = - ~  + cy , m = even integer (1.11) 

F(y) = - ~  + (cy) 1/2 cos ln(cy) + c~ , m = odd integer (1.12) 

where c is an arbitrary constant and e is a constant to be chosen 
appropriately. When F(0) = - n ~  then we want to know which of these 
two solutions is approached by F(y) when y ~ 0  (r ~oo) .  In order to 
answer that question we multiply (1.10) by y3F'(y), integrate with respect 
to y from y to o% and use F(0) = - n ~ .  Thus we get 

y2F'(y) + 2y[F'(y)] 2 dy = 1 - cos[2F(y)] (1.13) 

Since the left-hand side of  (1.13) is always positive, the value of F(y) is 
always limited to the interval n r c -  ~ < F ( y ) <  nrc § ~. Taking the limit 
y---, 0, we find that (1.13) is reduced to 

fo ~ 2y[F'(y)] 2 dy = - ( - 1) m (1.14) 1 
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where we used (1.11)-(1.12). Since the left-hand side of  (t .14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying 
F(0) = -nrc  approaches (1.12) and we have F(oo) r 0. The behavior of the 
solution (I.11) in the asymptotic region y ~ co ( r ~ 0 )  is investigated by 
multiplying (1.10) by F'(y) ,  integrating from 0 to y, and using (1.11). The 
result is 

2 sin e F ( y )  ~Y 2 sin 2 F ( y )  d [F'(y)] 2 y2 Jr- J0 y3 Y (1.15) 

From (t.15) we see that F ' ( y ) ~ c o n s t  as y ~ o o ,  which means that 
F(r) ~- 1/r for r ~ 0. This solution has a singularity at the origin and cannot 
satisfy the usual boundary condition F(0) = -nrc. 

In Datarsson (1991b), I suggested a method to resolve this difficulty by 
introducing a radial modification phase q)= ~0(r) in the ansatz (1.4) as 
follows: 

U(r) = exp[i~ �9 roF(r ) + iq~(r)], r o = r/r (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral u-model. 

In the present paper we use the constant-cutoff limit of  the cutoff 
quantization method developed by Balakrishna et aI. (1991, see also Jain et 
al., 1989) to construct a stable chiral quantum soliton within the original 
chiral o'-model. Then we apply this method to the CH K  model of strange 
baryons and derive the results for spectra of  hyperons and strange 
dibaryons. 

The reason the cutoff approach to the problem of  the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F ( o e ) =  0 is singular at r = 0. From the 
physical point of  view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of  the soliton. 

However, as argued in Balakrishna et al. (1991), when a cutoff e is 
introduced then the boundary conditions F(e) = - m z  and F(oo) = 0, can 
be satisfied. In Balakrishna et al. (1991) an interesting analogy with the 
damped pendulum is discussed, showing clearly that as long as ~ > 0, there 
is a chiral phase F = F(r) satisfying the above boundary conditions. The 
asymptotic forms of  such a solution are given by equation (2.2) in 
Balakrishna et aL (199t).  From these asymptotic solutions we immediately 
see that for e ~ 0 the chiral phase diverges at the lower limit. 
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2. CONSTANT-CUTOFF STABILIZATION 

The chiral soliton with baryon number n = 1 is given by (1.4), where 
F = F(r) is the radial chiral phase function satisfying the boundary condi- 
tions F(0) = - ~  and F ( ~ )  = 0. 

Substituting (1.4) into (1.1), we obtain the static energy of the chiral 
baryon 

I 1 o - 2 F 2  dr r 2 (o \ d r )  + 2 sin2 F (2.1) 

In (2.1) we avoid the singularity of the profile function F=F(r)  at the 
origin by introducing the cutoff e(t) at the lower boundary of the space 
interval re[0,  oo], i.e., by working with the interval re[e, ao]. The cutoff 
itself is introduced following Balakrishna et al. (1991) as a dynamic 
time-dependent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

dl ~ r 2 = sin 2F (2.2) 

with the boundary conditions F ( e ) - - - ~  and F ( ~ ) =  0, such that the 
correct soliton number is obtained. The profile function F = F[r; ~(t)] now 
depends implicitly on time t through e(t). Thus in the nonlinear a-model 
Lagrangian 

L = ~  Tr(O~u~g+)d3x (2.3) 

we use the ans/itz 

where 

U(r, t) = A(t)Uo(r, t)A +(t), U+(r, t) = A(t)U~(r, t)A+(t) (2.4) 

Uo(r, t) = exp{ir, roF[r; e(t)]) (2.5) 

The static part of the Lagrangian (2.3), i.e., 

F 2 
J 'Tr(VU VU +) d3x -Eo  (2.6) L 

16 

is equal to minus the energy E o given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = ~ Tr(~?o g ~?o U+) d3x = bx2 Tr[~?oA ~?oA +] + c[2(t)] 2 (2.7) 
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where 

. ~  foo 2re 2 /%o /dF \2  
b= F 2 sinZFy2dy, c = v F ~  J, y2LTfiy)yZdy (2.8) 

with x(t)= [~(t)] 3/2 and y =r/e. On the other hand, the static energy 
functional (2.1) can be rewritten as 

~z 2s176176 [ +2sin2Fldy (.2.9) Eo=ax 2/3, a=~F~ y2 (dFy  
\dy / 

Thus the total Lagrangian of the rotating soliton is given by 

L = c2 2 - ax 2/3 + 2bx2~v~ v (2.10) 

where Tr(0oA 0o A +) = 20iv~ ~ and c~ (v = 0, i, 2, 3) are the collective coordi- 
nates defined as in Bhaduri (1988). In the limit of a time-independent cutoff 
(2 ~ 0) we can write 

3L 1 
~ V - L  =ax2/3 q- 2bx2~dV=ax2/3-l-2-~x2J(J q- 1) (2.11) H = (?d--7 

where ( j 2 ) = j ( j q _  1) is the eigenvalue of the square of  the soliton 
laboratory angular momentum. A minimum of (2.11) with respect to the 
parameter x is reached at 

V_ ?_ ]"4 x = ~ ~ - ] =  (2.12) 
L3 J(J Jr- 1)J L3 J(J + 1)J 

The energy obtained by substituting (2.12) into (2.11) is given by 

3 a  3 4 [ ~ J ( J  q-1)]'/4 (2.13) E=5 
This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that 
a ~ Or/4)FZa and b ~ (rc/4)FZb and introduce f~ = 2-3/2F~. However, in the 
present approach, as shown in Balakrishna et al. (1991), there is a profile 
function F = F(y)  with proper soliton boundary conditions F(1) = - rc  and 
F(oo) = 0 and the integrals a, b and c in (2.9)-(2.10) exist and are shown 
in Balakrishna et al. (1991) to be a = 0 . 7 8 G e V  2, b = 0 . 9 1  GeV 2, and 
c = 1.46 GeV 2 for F. = 186 GeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N)= 1167 MeV, which is about 25% higher than the empirical 
value of 939 MeV. However, if we choose the pion decay constant equal to 
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F, = 150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are for 
the above values of the pion decay constant in order to check if they are in 
the physically acceptable ballpark. Using (2.12), it is easily shown that for 
nucleons (J = 1/2) the cutoffs are equal to 

= ~0.22 fm for F~ = 186 MeV (2.14) 
e [0.27fm for F ,  = 150MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to F~ ~, we see that the pion decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. 
Such values of the pion decay constant are not relevant to any physical 
phenomenon. 

3. ELECTROMAGNETIC POLARIZABILITIES 

The calculation of the static electromagnetic polarizabilities in the 
complete Skyrme model (1961, 1962) was first performed by Scherer and 
Mulders (1992). As argued in Scherer and Mulders (1992), the nucleon 
electromagnetic polarizabilities provide important information about the 
nucleon structure and it is of great interest to calculate these in the 
framework of the Skyrme model. The static electric (magnetic) polarizabil- 
ity of a baryon is a measure of how an electric (magnetic) dipole moment 
is induced by a constant external field: p = ~E (~t =/~B). The dynamic or 
Compton polarizabilities ~d and ]~d, obtained from a low-energy expansion 
of the Compton-scattering cross section, differ from the static polarizabili- 
ties due to relativistic and retardation effects related to the finite size of the 
nucleon. The dynamic electric polarizability of the neutron may also be 
obtained using Compton scattering on the neutron in the deuteron. The 
static electric polarizability for neutrons may be obtained from the scatter- 
ing of low-energy neutrons on heavy nuclei. The most recent empirical 
values for electric and magnetic polarizabilities of nucleons, as found in 
Adkins et al. (1983), are given in Table I. 

Theoretical investigations have used the nonrelativistic quark model 
(Drechsel and Russo, 1984; Sch6berl and Leeb, 1986), chiral bag models 
(Hecking and Bertsch, 1981; Weiner and Weisse, 1985; Nyman, 1984), and, 
most recently, chiral perturbation theory (Bernard et al., 1991, 1992). Their 
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Empirical Values for the Electric and Magnetic Polarizabilities of Nucleons in Units 
of 10 4fm3 

Nucleon % 3d ~ 3 

p 10.9 + 3.5 3.3 ___ 3.5 - - 
11 7 +4.7 12.0+3.5 - 1 t  �9 - 1 1 . 7  - -  - -  

predictions vary significantly, and the range of variation can be found in 
Scherer and Mulders (1992). 

In Dalarsson (1993) and here it is shown that the Skyrme model can 
be simplified by omitting the quartic Skyrme stabilizing term and per- 
forming the constant-cutoff quantum stabilization of the Skyrme soliton. 

The chiral quan tum model developed in Dalarsson (1993) gives the 
spectra of nonstrange and strange baryons in relatively good agreement 
with the empirical values. It is therefore of great interest to calculate the 
static electromagnetic polarizabilities of nucleons in the simplified Skyrme 
model as a further test of  the self-consistency of  the model. The aim of  the 
present paper is to perform such a calculation and compare the results for 
the electromagnetic polarizabilities with the corresponding empirical values 
as well as the predictions of the complete Skyrme model found in Scherer 
and Mulders (1992). 

4. THE ELECTROMAGNETIC INTERACTION IN TI tE  
SIMPLIFIED SKYRME M O D E L  

The Lagrangian density for the simplified SU(2) Skyrme model has 
the form 

F~ 2 . 2 F 2 
~ T r ( g -  1) (4.1) Y = f ~ T r  a~Uc~"U + + 

where U is the usual SU(2)-skyrmion field, which in the static case has the 
form 

Uo = exp[i, �9 roF(r)], ro = r/r (4.2) 

and F(r) is a radial function which satisfies the nonlinear differential 
equation 

d (r2dF'~ 
drr \ drrJ = sin(2F) + m 2 r  2 sin F (4.3) 
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with the boundary conditions F(e) = -z t  and F ( ~ )  = 0. Here F~ and ms 
are the pion decay constant (empirical value F, = 186 MeV) and pion mass 
(empirical value rn~ = 138 MeV), respectively, while e is the constant cutoff 
used in the constant-cutoff stabilization method (Dalarsson, 1993). In the 
SU(2) • SU(2) symmetric chiral model like the one described in the 
present paper, the Wess-Zumino action vanishes and does not contribute 
to the baryon dynamics. 

In order to make the Lagrangian density (4.1) invariant under local 
electromagnetic gauge transformations, i.e., 

U --* exp[ - ieQz(x)] U exp[ieQz(x)] 

U + -* exp[ - ieQz(x)] U + exp[ieQz(x)] 

A u ~ A~ + O~)~(x) 

(4.4) 

where 

(4.5) 

(4.6) 

[ 2 / 0 3 0 7 1 1  [ 10 ~t  
Q = - 1/3J = 6 + 2 T3, r3 = _ (4.7) 

is the matrix of electric charge of u- and d-quarks, e is the elementary 
electric charge, and X = Z(x) is the local phase angle, we replace the 
ordinary derivatives in (4.1) by the covariant derivatives defined by 

Q~ U -o D~ U = 3~ U + ieA~[Q, U] (4.8) 

O~U + --, D , U  + = a~U + + ieA,[Q, U +] (4.9) 

where [A, B] = A B -  BA. Expanding the gauge-invariant Lagrangian 

F 2 m2F 2 
5~ = - ~ Tr D, UD"U + + ~ Tr(U - 1) (4.10) 

16 

up to terms of the second order in the elementary charge, i.e., up to e 2, we 
obtain 

,~9 = ~ 0  -~- " ~ I  . . . . .  tor -]- ~ I sosca la r  

- ~6Tr(8~ U ~ U + )  + ~ Tr(U - 1 )  

e2F 2 
- e A . J  ~ - 16 ~ A . A "  Tr([Q, U][Q, g+]) 

1 e 2 
- -~ eA~B ~ + i ~ e~vp~ ~ A  ~A p Tr[(~V"UU + + g + ~ ~ (4.11) 
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with the Lagrangian of the free electromagnetic field omitted, and where 

J~ = V3~ = - i ]-~ Tr(z 3 U+ a~ U + z 3 U 0~ U +) (4.12) 

is the isovector electromagnetic current density [see equation (3.5) in 
Dalarsson (1992) in the SU(2) x SU(2) case, with the Wess-Zumino term 
omitted and 2 3 replaced by %], and 

1 
B, =2~5~ 2 e,~.~B Tr U + ~ U U  + O~UU + ~ U  (4.13) 

is the topological baryon current density. The fifth term in (4.11) propor- 
tional to the topological baryon current density (4.13) is the isoscalar 
electromagnetic interaction, linear in the electromagnetic field, and it is not 
gauge invariant. In order to make the total Lagrangian density gauge- 
invariant, we have added the last term in (4.11), which is quadratic in the 
electromagnetic fields. 

5. STATIC ELECTRIC POLARIZABILITIES 

The static electric polarizability is most easily extracted from the result 
for the shift in soliton energy in an external constant electric field o ~ = #z0 
with A~ = ( - z g ,  0, 0, 0) given by 

1 
AE = - ~  ctd ~ (5.1) 

The shift in soliton energy (5.1) is obtained by substituting the field 
A, = ( - z g ,  0, 0, 0) into the interaction part of the Lagrangian density 
(4.11) and rotating the soliton field (4.2) as follows: 

U(t) = A( t )  UoA +(t) = exp[i~JRjkr~F(r)] (5.2) 

where Rj~ is a 3 x 3 rotation matrix which actively rotates the isovector 
r0 sin F of  the hedgehog soliton (5.2). 

Thus we obtain the space-integrated Lagrangian to the second order in 
the elementary charge, i.e., up to e 2, in the form 

1 2  l [ 2D(2)~  1 t ( t )  -=~'~to - - E  s q__2ge~2 1 --  5 0,0, , fl, ~) (5.3) 

where the inertia f~ and the static energy E s of the soliton are given by 

2re 2 f ~  
f~ = -~- F~ dr r 2 sin 2 F (5.4) 
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Es = ~ F2~ dr [_ \drrJ  + 2 sin 2 g + 4mZr 2 sin -~ (5.5) 

The Wigner rotation functions are of the form 

D(2,)~( a, fl, 7) = (J', m]~(~, fi, v)~, n)  (5.6) 

with 

~(~, fl, y) = exp( - iaJx) exp( - iflJy) exp( - iTJ~) 

The Euler angle e here should not be confused with the electric polarizabil- 
ity given in (5.1). Furthermore, the vector o~ is the angular velocity of  the 
global rotation, defined by 

l~jkRmk = --ej,,,co, (5.7) 

and in deriving equation (5.3) we used the relation 

1 2 D(2) fc~ fl, y) (5.8) R 3=5+ 5 o , o , ,  

From (5.3) we see that the terms linear in the electromagnetic fields in 
the Lagrangian density (4.11) do not contribute to the space-integrated 
Lagrangian (5.3), since the space integrals of the functions Ao(x)J~ t) 
and Ao(x)B~ t) are integrals of odd functions over symmetric intervals. 
Furthermore, the last term in (4.11) does not contribute to the static 
Lagrangian, since in the case of a constant electric field the indices p and 
v in that term must both be zero, such that the antisymmetric tensor euvp~ 
vanishes. Thus the only contributing term is the fourth term in (4.11), 
which gives rise to the following value of the parameter ge in equation 
(5.3):  

2roe2 f ~  ge __ 2 r 4 9 F~ dr sin 2 F  (5.9) 

The momentum conjugate to the angular velocity co is the isospin T, 
given by 

6L 
T =~-~ = f~o) (5.10) 

The Hamiltonian corresponding to the Lagrangian (5.3) is given by 

H = T . o ~ - L  = Ho + HI 

2f~ + E , - -  geg2 1 5 o.o, ,fl, 7) (5.11) 
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The first two terms of (5.11) constitute the Hamiltonian of the rotating 
soliton with the electric field switched off. The third term may be treated as 
the perturbation due to the presence of the electric field. The unperturbed 
Hamiltonian (H0) is quantized by means of the collective coordinates, and 
the eigenfunctions of H0 as the functions of the Euler angles are given by 

- r  1 , - , + J , | 2 J + l / ' / 2 o { ~  ,> t,, /~,7) (5.12) <~162 ' L 8--7-/ 

The perturbation Hamiltonian HI commutes with T 3 and J3 and it is 
therefore already diagonalized, such that the energy shift due to the 
presence of the electric field is easily calculated to read 

1 AE= <T=J, Z3,&lnzlz=J, T3, J3> . . . . .  e2 (5.13) 
2 g 

and the polarizability e = ge is equal to the parameter ge given by (5.9). 
From (5.13) we see that the electric polarizability is the same for all 

nucleon states regardless of their spin and isospin quantum numbers. This 
property is not shared by the A-particles, where the polarizability depends 
on their spin and isospin quantum numbers. Thus, using the result 

fo2= dot s sin fl dfi s dT <~ fl, TIT = J, T3, J3> 

x ~0.o',~,n(2)/~ t3, T I T = J ,  T3,J3> 
[3T3 2 - T(T + 1)][3J~- T(T + 1)] 

= (5.14) 
(2T - 1)T(T + 1)(2T + 3) 

we obtain for A particles 

fge( 1 2 ) ,  IT3I = ij3 ' 

c~ = (5.15) 

~ge( l q- ~---5)' [Z3l :~ 'J3' 

In order to perform the numerical calculations of the electric polarizabili- 
ties of nucleons and A particles we must calculate the parameter ge given by 
(3.8). Since m~e 2 ~ 0.02 ~ 1, the symmetry-breaking term, proportional to 
m~ 2, constitutes only a few percent of the total energy and the chiral 
SU(2) x SU(2) symmetry is approximately well satisfied. However, in the 
present paper it is not possible to use the limit m= --+ 0, since for m= ~ 0 the 
electromagnetic polarizabilities diverge as 1/m~, as argued in Scherer and 
Mulders (1992). Therefore we use a profile F = F(r), obtained for rn= # 0, 
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to calculate the parameter ge from equation (5.9), 

2~e 2 ;~o 
ge= F2e 5 dyy4sin2F,~22.6 x 10-4 fm 3 (5.16) 

9 

where, following Scherer and Mulders (1992), we used Gaussian units 
(e2= 1/137). Using the result (5.16), we can now calculate the numerical 
values of the static electric polarizabilities of nucleons and A particles. 

6. STATIC MAGNETIC POLARIZABILITIES 

The static magnetic polarizability is extracted from the result for the 
shift in soliton energy in an external constant magnetic field B - - B z  o with 
A, = (0, 1/2B x r) given by 

1 
AE = --2 fiB 2 (6.1) 

The shift in soliton energy (6.1) is obtained by substituting the field 
A, = (0, �89 x r) into the interaction part of the Lagrangian density (4.11) 
and rotating the soliton field (4.2) according to equation (5.2). Thus we 
obtain the space-integrated Lagrangian to the second order in the elemen- 
tary charge, i.e., up to e 2, in the form 

1 
_ 21 eB[f~D(o.)o(e,l fl, 7) + ~1 L(t) = ~ n~2 _ E, (r2).,oJRj~ A 

-~geB2[  1 "5" 2 D(2) 'e o,ot , fl, 7)] (6.2) 

where the inertia f~ and the static energy Es of the soliton are given by (5.4) 
and (5.5), respectively, and where the parameter ge is given by (5.9) or 
(5.16). The mean square radius ( r2) ,  is given by 

(r2) e = _ 2  dr r 2 sin 2 f d F  (6.3) 
dr 

In deriving the result (6.2) we used the result (5.8), the result 

R 3  3 _ r l ( l ) / , , ,  f l ,  ~ )  (6.4) - -  a J  0,0 \ ~  , 

and the fact that the last term in the Lagrangian density (4.11) does not 
contribute to the static magnetic polarizability either, as argued in Atkins 
et al. (1983). From (6.2) we see that the Lagrangian function contains both 
linear and quadratic terms in the magnetic field. 



94 Dalarsson 

The isospin is now given by 

6 L _ ~ J  1 
Tj = ao~j - - -6 e B ( r 2 ) s R j 3  (6.5) 

The Hamiltonian corresponding to the Lagrangian (6.2) is given by 

H = T j ( J )  j - -  L = H o + Hi, + H~r2 (6.6) 

where 

1 
H o  = ~-~ T 2 + Es (6.7) 

eB 
Hn  = 1 eB~D(o,~o(~, fl, 7) + (r2}s TJRj3 (6.8) 

14,2 = xme 2 1 . 5  + <r2) RJ3RJ3 (6.9) 

where we have introduced a magnetic parameter gm as follows: 

1 m e g = ~ g  =11 .3x  10-4fm 3 (6.10) 

The two terms in Hz~ are interaction terms of the magnetic field with the 
isovector and isoscalar magnetic moment. At this point there is a signifi- 
cant difference between the present model and the complete Skyrme model, 
since here the nonadiabatic correction to the isovector magnetic moment, 
which was neglected in Scherer and Mulders (1992) using the Nc ~ expan- 
sion in the large-N c limit, does not appear at all. 

The isospin generally does not commute with the rotation matrices Rj3 
occurring in the interaction terms (6.8) and (6.9). Therefore we have an 
ordering ambiguity in the second term of HI~, as argued in Scherer and 
Mulders (1992). However, using the Nc ~ expansion in the large-Nc limit, 
we see that the first terms of both H1~ and He are of the order N c ,  while 
the second terms of both HI~ and H~2 are of the order Nc ' . Thus in the 
large-N c limit we obtain 

u , , =  

H i 2  = 

with gm given by equation 

1 eB~D(o,]o(~, fl, 7) (6.11) 

I 2D(2)~a t~7)] (6.12) graB2 1 + ~  o.o~ ,e,  

(6.10). The energy shift (6.1) in the second-order 
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perturbation theory is 

I< fa,, I '>1 = (6.13) 

where 2 = {J = T, J3, T3 }. 
Substituting (6.11) and (6.12) into (6.13), we obtain the energy shift 

for nucleons 

1 [__gm e 2~")2- -]B 2 (6.14) 
AE = ~ + 9(MA -- MN)A 

where we used the argument that the states with J = T > 3/2 are spurious 
states for Nc = 3, such that the sum in (6.13) includes the contributions of 
the A particles and vice versa. Thus the magnetic polarizability of the 
nucleon is given by 

e2f~ 2 
]~ = fidia "~- fipara = _gin + 9(MA - MN) ( 6 . 1 5 )  

In deriving the paramagnetic magnetic polarizability, we used the expression 

J3, T3 o,0t,fl ,  7 ) , , / 3 ,  2 = 2  (6.16) 

Similarly to the static electric case, all nucleon states have the same 
magnetic polarizability, while the magnetic polarizabilities of A particles 
depend on the spin and isospin quantum numbers. Thus we have 

3 

e2f~ 2 1 
fl= __gin 1+  9(MA__MN), Ir3l=ls, l=5 (6.17) 

_gm( 1 2), IT3[ # IJ3l 

If the states with J = T = 5/2 are taken into account, each delta polarizabil- 
ity picks up an additional paramagnetic term similar to the A-particle 
contribution to the magnetic polarizability of the nucleon states (6.15). In 
order to calculate the static magnetic polarizabilities of nucleons and A 
particles we must calculate the second term of (6.15), i.e., 

e2~'~ 2 
flpara - -  9(Ma - -  M N )  - -  3.4 x 10 .4 fm 3 (6.18) 

Using the results (6.10) and (6.18), we can now calculate the numerical 
values of the static electric polarizabilities of nucleons and A particles. 
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Final ly ,  in the present  mode l  the re la t ion  a = - - 2 f l d i a  fol lows exact ly f rom 
(6.10), in agreement  wi th  sol i ton models  including vector  mesons  ins tead o f  
the Skyrme  quar t ic  term,  bu t  in d i sagreement  wi th  the comple te  Skyrme 
mode l  (Scherer  and  Mulders ,  1992). 

7. N U M E R I C A L  R E S U L T S  F O R  S T A T I C  E L E C T R O M A G N E T I C  
P O L A R I Z A B I L I T I E S  

In  the present  sect ion we discuss the  numer ica l  results for the stat ic 
e lec t romagnet ic  polar izabi l i t ies ,  in the simplified Skyrme mode l  deve loped  
in the previous  sections. The results  for  the electric polar izabi l i t ies  are given 
in Table  II .  

F r o m  Tables  I and  II,  we see tha t  the present  s tat ic  electric polar izabi l -  
ities are closer to the empir ica l  values than  those ob ta ined  in the comple te  
Skyrme mode l  ( A d k i n s  e t  a l . ,  1983), bu t  the difference between the present  
mode l  and  the comple te  Skyrme mode l  (Adkins ,  1983) is ra ther  small.  
Present  stat ic electric polar izabi l i t ies  are  still larger  than  the empir ica l  
values by a fac tor  2 - 3 .  

The  results  for  magnet ic  polar izabi l i t ies  are given in Table  III .  The 
d iamagne t ic  term/~dia in equa t ion  (6.15) and  the s imilar  terms in equa t ion  
(6.17) have the same behav io r  as the electric polar izabi l i t ies .  I t  should,  

Table II. Static Electric Polarizabilities of the Nucleon and the A Particles in Units of 
10-4 fm 3 

Particle a (F~ = 186 MeV) ~ (F~ = 186 MeV) a ~ (F~ = 108 MeV)" 

Nucleon 22.6 33.7 26.4 
Air31 = IJ31 20.8 31.0 24.3 
AIT31 ~ J J31 24.4 36.4 28.5 

"Adkins et al. (1983). 

Table IlL Static Magnetic Polarizabilities of the Nucleon and the A Particles in Units of 
104 fm 3 

Particle /~ (F, = 186 MeV) /~ (F, = 186 MeV) ~ /~ (F. = 108 MeV) a 

Nucleon - 7.9 7.1 - 7.1 
A[T3t =]J3l =3/2 - -  12.2 -- 14.9 - 11.6 
Air31 = I J31 = 1/2 - 15.6 -- 38.2 - 17.9 

AIr31 * i J31 -- 10.4 -- 17.5 -- 13.6 

"Adkins et al. (1983). 
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however, be noted that in the present model there is still the impossibility 
to simultaneously reproduce the empirical value for the isovector magnetic 
moment 1/3ef~ and the A-nucleon mass difference MA- MN, which are 
both found in the expression for the paramagnetic term flpara. The predic- 
tions given in Table III should therefore be treated as order-of-magnitude 
estimates, as argued in Scherer and Mulders (1992). 

From Tables I and III we see that the present static magnetic polariz- 
abilities are close to those obtained from the complete Skyrme model 
(Scherer and Mulders, 1992) for F~ = 108 MeV, while there are more 
significant differences compared to the results obtained in Scherer and 
Mulders (1992) for F~ = 186 MeV. Here the result obtained in Scherer and 
Mulders (1992) for F~ -- 108 MeV is somewhat closer to the empirical value 
of the nucleon magnetic polarizability, but as an order-of-magnitude 
estimate the present result is relatively accurate. 

Finally it should be noted that the results of both Tables II and III can 
be relatively easily reproduced from the corresponding tables in Scherer 
and Mulders (1992) when only the contributions of the second-order terms 
(using F~ = 186 MeV) are kept and e, fldia, and flpara are calculated in the 
framework of the simplified Skyrme model presented in Dalarsson (1993) 
or in the present paper. Furthermore, many of the analytic results through- 
out the paper are more or less identical to those of Scherer and Mulders 
(1992). Nevertheless we have included most of these results in order to 
demonstrate the analytical simplicity of the present model as well as some 
of the important analytic improvements such as the ones discussed below 
equations (6.10) and (6.18). 

8. CONCLUSIONS 

The present paper shows the possibility of using the Skyrme model for 
calculation of the electromagnetic polarizabilities of nucleons and A parti- 
cles, without use of the Skyrme stabilizing term, proportional to e-Z, which 
makes practical calculations more complicated and generates nonadiabatic 
corrections to the first-order isovector terms. 

For such a simple model with only one arbitrary dimensional constant 
F~, which is chosen equal to its empirical value F~ = 186 MeV, the accuracy 
in the prediction of the electromagnetic polarizabilities of nucleons and A 
particles is rather satisfactory. The results are at least as accurate as those 
of the complete Skyrme model, reported in Scherer and Mulders (1992), 
although they are larger by a factor 2-3 than the available empirical 
values. 

Furthermore, the relation ~ = -2fldia is satisfied without the complica- 
tions discussed in Scherer and Mulders (1992). 
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